Log in

Towards Data Science - 112. Tali Raveh - AI, single cell genomics, and the new era of computational biology
share icon

112. Tali Raveh - AI, single cell genomics, and the new era of computational biology

Towards Data Science

02/02/22

42m

About

Comments

Featured In

Until very recently, the study of human disease involved looking at big things — like organs or macroscopic systems — and figuring out when and how they can stop working properly. But that’s all started to change: in recent decades, new techniques have allowed us to look at disease in a much more detailed way, by examining the behaviour and characteristics of single cells.

One class of those techniques now known as single-cell genomics — the study of gene expression and function at the level of single cells. Single-cell genomics is creating new, high-dimensional datasets consisting of tens of millions of cells whose gene expression profiles and other characteristics have been painstakingly measured. And these datasets are opening up exciting new opportunities for AI-powered drug discovery — opportunities that startups are now starting to tackle head-on.

Joining me for today’s episode is Tali Raveh, Senior Director of Computational Biology at Immunai, a startup that’s using single-cell level data to perform high resolution profiling of the immune system at industrial scale. Tali joined me to talk about what makes the immune system such an exciting frontier for modern medicine, and how single-cell data and AI might be poised to generate unprecedented breakthroughs in disease treatment on this episode of the TDS podcast.

---

Intro music:

➞ Artist: Ron Gelinas

➞ Track Title: Daybreak Chill Blend (original mix)

➞ Link to Track: https://youtu.be/d8Y2sKIgFWc

---

Chapters:

0:00 Intro

2:00 Tali’s background

4:00 Immune systems and modern medicine

14:40 Data collection technology

19:00 Exposing cells to different drugs

24:00 Labeled and unlabelled data

27:30 Dataset status

31:30 Recent algorithmic advances

36:00 Cancer and immunology

40:00 The next few years

41:30 Wrap-up

Previous Episode

If you were scrolling through your newsfeed in late September 2021, you may have caught this splashy headline from The Times of London that read, “Can this man save the world from artificial intelligence?”. The man in question was Mo Gawdat, an entrepreneur and senior tech executive who spent several years as the Chief Business Officer at GoogleX (now called X Development), Google’s semi-secret research facility, that experiments with moonshot projects like self-driving cars, flying vehicles, and geothermal energy. At X, Mo was exposed to the absolute cutting edge of many fields — one of which was AI. His experience seeing AI systems learn and interact with the world raised red flags for him — hints of the potentially disastrous failure modes of the AI systems we might just end up with if we don’t get our act together now.

Mo writes about his experience as an insider at one of the world’s most secretive research labs and how it led him to worry about AI risk, but also about AI’s promise and potential in his new book, Scary Smart: The Future of Artificial Intelligence and How You Can Save Our World. He joined me to talk about just that on this episode of the TDS podcast.

Next Episode

It’s no secret that AI systems are being used in more and more high-stakes applications. As AI eats the world, it’s becoming critical to ensure that AI systems behave robustly — that they don’t get thrown off by unusual inputs, and start spitting out harmful predictions or recommending dangerous courses of action. If we’re going to have AI drive us to work, or decide who gets bank loans and who doesn’t, we’d better be confident that our AI systems aren’t going to fail because of a freak blizzard, or because some intern missed a minus sign.

We’re now past the point where companies can afford to treat AI development like a glorified Kaggle competition, in which the only thing that matters is how well models perform on a testing set. AI-powered screw-ups aren’t always life-or-death issues, but they can harm real users, and cause brand damage to companies that don’t anticipate them.

Fortunately, AI risk is starting to get more attention these days, and new companies — like Robust Intelligence — are stepping up to develop strategies that anticipate AI failures, and mitigate their effects. Joining me for this episode of the podcast was Yaron Singer, a former Googler, professor of computer science and applied math at Harvard, and now CEO and co-founder of Robust Intelligence. Yaron has the rare combination of theoretical and engineering expertise required to understand what AI risk is, and the product intuition to know how to integrate that understanding into solutions that can help developers and companies deal with AI risk.

---

Intro music:

➞ Artist: Ron Gelinas

➞ Track Title: Daybreak Chill Blend (original mix)

➞ Link to Track: https://youtu.be/d8Y2sKIgFWc

---

Chapters:
  • 0:00 Intro
  • 2:30 Journey into AI risk
  • 5:20 Guarantees of AI systems
  • 11:00 Testing as a solution
  • 15:20 Generality and software versus custom work
  • 18:55 Consistency across model types
  • 24:40 Different model failures
  • 30:25 Levels of responsibility
  • 35:00 Wrap-up

Promoted